KE CHEN

Audio Researcher · Software Engineer · Computer Musician

EDUCATION

UC San Diego

\cdot Ph.D Candidate in Computer Science (Expected Graduation Year: 2024)	Sep 2019 - Present
· Ph.D Candidate in Music	Sep 2019 - Present
\cdot M.A. in Music	Sep 2019 - Mar 2021
· Advisors: Prof. Shlomo Dubnov and Prof. Taylor Berg-Kirkpatrick	
Fudan University	Shanghai, China
	<i>j,</i> e
· B.E in Computer Science (Software Engineering Track), GPA 3.8/4.0	Sep 2015 - Jun 2019
	5 ,

Research Interests

Audio Representation Learning and Music Information Retrieval: including music generation, multimodal learning, audio source separation, audio classification, melody extraction, music recommendation, and speech enhancement.

Selected Projects

- Contrastive Language-Audio Pretraining (CLAP) (**9** 943 stars): A multi-modal framework that produces both audio and text corresponding representations for broad downstreaming applications.
- HTS-Audio Transformer (\$ 260 stars): Hierarchical Token-Semantic Transformer (HTS-AT), an efficient and light-weight audio classification and event detection model, achieving the state-of-the-art (SOTA) results on AudioSet and ESC-50, and Speech Command V2.
- POP909 (O 249 stars): A dataset of multiple versions as the piano arrangements of 909 popular songs created by professional musicians, along with algorithms to extract partial labels for music generation and MIR communities.
- Zero-shot Audio Source Separation (O 146 stars): A three-component pipeine that allows you to train a audio source separator to separate any source from the track by giving the source sample query. The model lies in a zero-shot setting as we never use the separation dataset but a general audio dataset AudioSet during the training stage.
- MusicLDM (O 87 stars): A text-to-music generation model for investigating the novelty and plagiarism issue on the audio diffusion model via the latent mixup strategy.
- Music SketchNet (**Q** 76 stars): A controllable music generative model that allows you to specify your own music ideas, namely pitch contour and rhythm, in the monophonic music generation scenario.
- LAION-Audio-630K (O 497 stars): An open-source large collection of audio dataset, each containing enormous amount of audio-text pairs, will be eventually processed and used for training CLAP model and others.
- Selective Speech Enhancement (Internal Project): A combined system of the speech enhancement model and the conditional source separator that is able to provide the high-fidelity speech track from the noised clip, while preserving the audio event of user specifications.
- Choral Music Separation (O 28 stars): An automated pipeline for synthesizing choral music data from sampled instrument plugins within controllable options for instrument expressiveness.

★ www.knutchen.com ☑ knutchen@ucsd.edu

in KeChen | 🖓 RetroCirce | 🔁 KeChen

California, USA

PUBLICATIONS

🎓 Google Scholar Link | 🖨 DBLP Link | 📕 ORCID Link | (* indicates the equal contribution)

Audio Representation Learning, Source Separation, Classification, and MIR

- [1] <u>K. Chen</u>, J. Su, and Z. Jin, "MDX-GAN: Enhancing Perceptual Quality in Multi-Class Source Separation via Adversarial Training", in *ICASSP 2024 (oral presentation)*.
- [2] <u>K. Chen</u>*, Y. Wu*, T. Zhang*, Y. Hui*, T. Berg-Kirkpatrick, and S. Dubnov, "Large-Scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation", in *ICASSP 2023*.
- [3] <u>K. Chen</u>, G. Wichern, F. G. Germain, and J. L. Roux, "Pac-HuBERT: Self-Supervised Music Source Separation via Primitive Auditory Clustering and Hidden-Unit BERT", in *ICASSP 2023 (SASE Workshop)*.
- [4] K. Shao*, <u>K. Chen</u>*, T. Berg-Kirkpatrick, and S. Dubnov, "Towards Improving Harmonic Sensitivity and Prediction Stability for Singing Melody Extraction", in *ISMIR 2023*.
- [5] <u>K. Chen</u>, X. Du, B. Zhu, Z. Ma, T. Berg-Kirkpatrick, and S. Dubnov, "Zero-shot Audio Source Separation through Query-based Learning from Weakly-labeled Data", in AAAI 2022 (oral presentation: 5%).
- [6] <u>K. Chen</u>, X. Du, B. Zhu, Z. Ma, T. Berg-Kirkpatrick, and S. Dubnov, "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection", in *ICASSP 2022* (oral presentation).
- [7] <u>K. Chen</u>, S. Yu, C. Wang, W. Li, T. Berg-Kirkpatrick, and S. Dubnov, "TONet: Tone-Octave Network for Singing Melody Extraction from Polyphonic Music", in *ICASSP 2022 (oral presentation)*.
- [8] <u>K. Chen</u>, H. Dong, Y. Luo, J. McAuley, T. Berg-Kirkpatrick, M. Puckette, and S. Dubnov, "Improving Choral Music Separation through Expressive Synthesized Data from Sampled Instruments", in *ISMIR 2022*.
- J. Jiang, <u>K. Chen</u>, W. Li, and G. Xia, "Large-vocabulary Chord Transcription via Chord Structure Decomposition", in *ISMIR 2019 (oral presentation)*.
- [10] Q. Kong*, <u>K. Chen</u>*, H. Liu, X. Du, T. Berg-Kirkpatrick, S. Dubnov, and M. Plumbley, "Universal Source Separation with Weakly Labelled Data", in *submission for TPAMI*.
- [11] N. Srivatsan, <u>K. Chen</u>, S. Dubnov, and T. Berg-Kirkpatrick, "Retrieval-Augmented Music Captioning via Multimodal Prefixes", in *submission for a double-blinded conference*.

Music Generation and Recommendation

- [12] <u>K. Chen</u>^{*}, Y. Wu^{*}, H. Liu^{*}, M. Nezhurina, T. Berg-Kirkpatrick, and S. Dubnov, "MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies", in *ICASSP 2024 (oral presentation)*.
- [13] H. Dong, <u>K. Chen</u>, S. Dubnov, J. McAuley, and T. Berg-Kirkpatrick, "Multitrack Music Transformer", in *ICASSP* 2023 (oral presentation).
- [14] S. Dubnov, <u>K. Chen</u>, and K. Huang, "Deep Musical Information Dynamics: Novel Framework for Reduced Neural-Network Music", in *Journal of Creative Music Systems*, *JCMS 2022*.
- [15] <u>K. Chen</u>, B. Liang, X. Ma, and M. Gu, "Learning Audio Embeddings with User Listening Data for Content-based Music Recommendation", in *ICASSP 2021*.
- [16] <u>K. Chen</u>, C. Wang, T. Berg-Kirkpatrick, and S. Dubnov, "Music SketchNet: Controllable Music Generation via Factorized Representations of Pitch and Rhythm", in *ISMIR 2020*.
- [17] <u>K. Chen</u>*, Z. Wang*, J. Jiang, Y. Zhang, M. Xu, S. Dai, X. Gu, and G. Xia, "POP909: A Pop-song Dataset for Music Arrangement Generation", in *ISMIR 2020*.
- [18] <u>K. Chen</u>, G. Xia, and S. Dubnov, "Continuous Melody Generation via Disentangled Short-Term Representations and Structural Conditions", in *International Conference on Semantic Computing*, ICSC 2020.
- [19] <u>K. Chen</u>, W. Zhang, S. Dubnov, and G. Xia, "The Effect of Explicit Structure Encoding of Deep Neural Networks for Symbolic Music Generation", in *Inter. Workshop on Multi-Music Representation and Processing*, MMRP 2019.

Others

- [20] H. Liu, <u>K. Chen</u>, Q. Tian, W. Wang, and M. Plumbley, "AudioSR: Versatile Audio Super-resolution at Scale", in *ICASSP 2024 (oral presentation)*.
- [21] M. Chemillier, <u>K. Chen</u>, M. Malt, and S. Dubnov, "A Posthumous Improvisation by Toots Thielemans", in *Toots Thielemans (1922-2016). A Century of Music across Europe and America, 2022.*
- [22] X. Du, <u>K. Chen</u>, Z. Wang, B. Zhu, and Z. Ma, "ByteCover2: Towards Dimensionality Reduction of Latent Embedding for Efficient Cover Song Identification", in *ICASSP 2022*.
- [23] X. Du, H. Liang, Y. Wan, Y. Lin, <u>K. Chen</u>, B. Zhu, and Z. Ma, "Latent Feature Augmentation for Chorus Detection", in *ISMIR 2022*.
- [24] H. Dong, <u>K. Chen</u>, J. McAuley, and T. Berg-Kirkpatrick, "MusPy: A Toolkit for Symbolic Music Generation", in ISMIR 2020.

Patents

- [25] W. Li and <u>K. Chen</u>, "A Robust Digital Audio Watermark Embedding System Based on Constant Watermark", in *Chinese Patent: 2018104457495.*
- [26] W. Li, Y. Wu, and <u>K. Chen</u>, "An Automatic Detection System for Audio Signal Similarity", in *Chinese Patent:* 2018104457546.

EXPERIENCE

Academic	
Center for Research in Entertainment and Learning, UC San Diego	La Jolla, California, USA
Music X Lab, NYU Shanghai	Shanghai, China
Audio and Music Technology Laboratory, Fudan University	Shanghai, China
Center for Computer Research in Music and Acoustics, Stanford University	Palo Alto, California, USA
Industry	
Adobe Inc.	California, USA
Research Intern by Zeyu Jin and Jiaqi Su Adobe Research	Jun 2023 - Present
 Design high-fidelity audio event and speech separation models for speech-centered acoustic s Selected in Adobe Max Sneak Japan 2023. 	scenarios.
Mitsubishi Electric Research Laboratories	Massachusetts, USA
PhD Intern by Gordon Wichern Speech & Audio Team	Sep 2022 - May 2023
\cdot Design machine learning models on self-supervised music source separation.	
Apple Inc.	California, USA
PhD Intern by Venkatraman Atti Interactive Media Group	Jun 2022 - Sep 2022
\cdot Design machine learning models on audio codecs.	
\cdot Selected as the intern presenter to Craig Federighi, the Apple's senior vice pres	ident.
Bytedance Ltd.	Shanghai, China
Research Intern by Xingjian Du and Bilei Zhu AI Lab Speech & Audio Team	Jun 2021 - Sep 2021
\cdot Design hierarchical audio transformer for audio classification and zero-shot audio source sep	aration.
Tencent Music Entertainment	Shenzhen, China
Research Intern by Beici Liang	Jul 2020 - Sep 2020
\cdot Design machine learning models on music recommender systems across QQ Music Platform	

ACADEMIC SERVICE

Invited Talks & Presentations

· Text-to-Music Generation via Latent Diffusion Models Spotify, USA	Oct 2023
· Contrastive Language-Audio Pretraining Harmonica.ai, Canada	May 2023
· Contrastive Language-Audio Pretraining Music X Lab, NYU Shanghai, Shanghai	Mar 2023
· Hierarchical Token-Semantic Audio Transformer ICASSP 2022, Singapore	May 2022
\cdot Singing Melody Extraction with Tone-Octave Network ICASSP 2022, Singapore	May 2022
\cdot Zero-shot Audio Source Separation through Query-based Learning Mila x Vector Institute, Canada	Mar 2022
· Zero-shot Audio Source Separation through Query-based Learning Bytedance (Tiktok), USA	Jan 2022
· Zero-shot Audio Source Separation through Query-based Learning AAAI 2023, Online	Jan 2022
\cdot Singing Melody Extraction with Tone-Octave Network Computer Music Group, CMU, USA	Aug 2021
· Controllable Music Generation via Latent Variable Disentanglement ISMIR 2020, Online	Nov 2020

Reviewing

· Conference: Neurips 2023, ICML 2022 & 2023, AAAI 2022 & 2023, ICASSP 2022 & 2023, ISMIR 2022 & 2023

· Journal: IEEE JSTSP, EURASIP

Teaching

Teaching Assistant Music Department, UC San Diego	La Jolla, California, USA
\cdot Mus 5: Sound in Time	Fall 2021
\cdot Mus 170: Music Acoustics	Spring 2021
\cdot Mus 173: Electronic Music Production	Winter 2021; Fall 2020
\cdot Mus 172: Computer Music II	Spring 2020
\cdot Mus 111: Topics/World Music Traditions	Winter 2020
\cdot Mus 171: Introduction to Computer Music	Fall 2019

Scholarships and Awards

- National Scholarship: 2016 2017 (Top 1 in terms of Overall Evaluation, 0.2% in China)
- National Scholarship: 2015 2016 (Top 1 in terms of Overall Evaluation, 0.2% in China)
- Golden Award in Shanghai A Cappella Competition: Winter 2016
- First Runner-Up in Fudan iShamrock Software Competition: Mar 2018
- First Prize in Shanghai "Ideal Cup" Modeling Competition: Summer 2017
- Freshman Scholarship: Fall 2015

Skills

- Language: Native in Chinese; Fluent in English
- Programming: Python, JavaScript, Swift-C, C, HTML, Java, PureData, and Matlab
- Framework: PyTorch, TensorFlow, Vue.js, and React
- Digital Audio Workstation: Cubase, FL-Studio, and Ableton Live
- Instrument: Piano (20 years)
- Creative Production: Adobe Premiere, Adobe AfterEffect, Adobe Audition, and Adobe Photoshop
- Hobbies: composition, video clipping, table tennis, and volleyball